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Simulation in HEP
¤ Detailed simulation of subatomic particles is essential for 
data analysis, detector design

¤ Complex physics and geometry modeling

¤ Heavy computation requirements, massively CPU-
bound
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200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage 

More than 50% of WLCG power is used for simulations

@HL-LHC needs x100 speed-up in simulation



Speeding up simulation
¤ State of the art software is Geant4

¤ All particle MonteCarlo transport program

¤ C++ open source simulation toolkit

¤ Capable of handling extremely complex geometries

¤ Large spectrum of applications

¤ Massive and extensive validation 

¤ Event level multi-threading
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GeantV: Adapting simulation to modern 
hardware

Classical 
simulation
hard to approach 
the full machine 
potential

GeantV
simulation
needs to profit at 
best from all 
processing 
pipelines

• Single event scalar 
transport

• Embarrassing 
parallelism

• Cache coherence – low
• Vectorization – low 

(scalar auto-
vectorization)

• Multi-event vector 
transport

• Fine grain parallelism
• Cache coherence – high
• Vectorization – high 

(explicit multi-particle 
interfaces)
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Some benchmarks on multi-cores
¤ GeantV delivers already a part of the 

expected performance

¤ Testing new geometry navigation 
performance wrt classical (ROOT)

¤ CMS detector simulation (tabulated physics) 
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Going beyond x10: fast simulation
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¤ In the best case scenario GeantV will give O(10) speedup

¤ Not enough to cope with HL-LHC expected needs

¤ Improved, efficient and accurate fast simulation

¤ Currently available solutions are detector dependent

¤ A general fast simulation tool based on Machine Learning 
techniques 

¤ Fully configurable interface embedded in GeantV



Going beyond x10: fast simulation
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ML engine for fast simulation
Untrained Model Training Trained Model

http://www.physics.umd.edu/rgroups/hep/LegoCMS/

Detector

Physics (e+, e-,γ,π..)
Kinematics…  

GeantV
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http://www.quantumdiaries.org/wp-content/uploads/2011/06/JetConeWithTracksAndECAL.png
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Testing GANs for calorimeter images
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LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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A long way to an optimal network architecture
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• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)

3

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)

3
Particle label

(1) See Amir’s talk and tutorials

¤ Calorimeters simulation is time consuming

¤ Treat energy deposits in cells as 3D image

¤ Use LCD ECAL dataset(1)

¤ Use particle flags to condition the 
training 

¤ 3D convolutions using Keras + 
Tensorflow



Testing GANs for calorimeter images
¤ Similar discriminator and generator models

¤ 3D conv layers with different x,y,z filter sizes

¤ Implemented several tips&tricks found in literature

¤ Some helpful (no batch normalisation in the last step, LeakyRelu, no 
hidden dense layers)

¤ Some not (Adam optimiser)

¤ Batch training

¤ Loss is combined cross entropy 

¤ Tested different optimisers
12

Yhttps://github.com/tpmccauley/ispy-hepml

Geant4 π shower in LCD calorimeter



Some images
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Preliminary

¤ Slice energy spectrum

¤ Start with photons & electrons



GAN generated electrons
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Single cells
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Single cells

¤ Cell energy sigma is underestimated by GAN

¤ Set up higher level criteria for image validation (reconstructed variables)
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Mean sigma

¤ Compare energy distribution mean and sigma per cell
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Next steps
¤ Detailed study of calorimeter response and comparison to full sim and 
different  fast sim tool

¤ Testing different models to improve physics performance

¤ Include energy info

¤ Use information available in the LCD dataset to compare to different 
techniques (i.e. MO regression)

¤ Test different frameworks

¤ Test training on real data
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Training time ?

¤ Currently adversarial training takes a few hours on NVIDIA GTX1080 

¤ Work on the training algorithm

¤ Using DL techniques for fast simulation is profitable if training time is not 
a bottleneck

¤ Depending on the final use case retraining the networks might be 
necessary 

¤ Test different hardware &  multi-node scaling 
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Longer term…

¤ We want to provide a generic fully configurable tool 

¤ Optimal network design depends on the problem to solve

¤ Embedded algorithms for hyper-parameters tuning and meta-
optimization

¤ Large hyper-parameter scans

¤ Study parallelization on large clusters

¤ Evaluate existing libraries 

¤ Optimize training strategy by reducing communication overhead
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Summary

¤ First images using GANs look very promising 

¤ Keep working on understanding  and 
improving performance

¤ Insure computing efficiency and optimal 
performance on modern hardware

¤ Initial step of a wider plan to do ML based fast 
simulation with GeantV

¤ Even larger speedup gained by replacing 
digitization and reconstruction steps
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Thank you
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..many thanks to M. Pierini and J. Vlimant ! 
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